{ "cells": [ { "cell_type": "markdown", "id": "f34d9b58-8b0e-4936-a75e-3da3104354b8", "metadata": {}, "source": [ "# Métodos de _clustering_" ] }, { "cell_type": "markdown", "id": "3f2b0f9c-2446-41c7-a3c7-c27776a5f653", "metadata": {}, "source": [ "Da mesma forma que podemos especificar diferentes métricas de distância, podemos também especificar diferentes métodos de agregação, que com base na distância entre os vários pontos vão determinar de que forma podem ser agrupados: de que forma se determina a ligação entre eles.\n", "\n", "O valor por omissão usado pela função `linkage` o da ligação `single`, determinada pela distância mínima entre os pontos mais próximos $ \\min \\,\\{\\,d(a,b):a\\in A,\\,b\\in B\\,\\} $; uma alternativa bastante comum e que determina os _cluster_ com base na distância média é o `average` (também conhecido por UPGMA), e outra é o método de Ward `{cite}`pennsylvaniastateuniversity14WardMethod`\n", "\n", "Podemos ver a diferença entre os três com o seguinte exemplo; adicionamos um partido (\"B\") normalmente se abstem mas vota duas vezes de forma diferente, ambas em sentido oposto ao partido \"A\"." ] }, { "cell_type": "code", "execution_count": 2, "id": "d3543e05-114f-4603-b903-96cfd1ec8e53", "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "import pandas as pd\n", "from scipy.spatial.distance import squareform\n", "from scipy.spatial.distance import pdist\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "import seaborn as sns\n", "import scipy.spatial as sp, scipy.cluster.hierarchy as hc\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 3, "id": "34edba64-7478-4012-a3d2-7d1439167d68", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FABC
F0.0000004.5825763.4641026.324555
A4.5825760.0000003.3166253.000000
B3.4641023.3166250.0000003.464102
C6.3245553.0000003.4641020.000000
\n", "
" ], "text/plain": [ " F A B C\n", "F 0.000000 4.582576 3.464102 6.324555\n", "A 4.582576 0.000000 3.316625 3.000000\n", "B 3.464102 3.316625 0.000000 3.464102\n", "C 6.324555 3.000000 3.464102 0.000000" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "v5=[[1,1,1,1,1,1,1,1,1,1],[0,0,0,1,0,-1,0,-1,-1,-1],[0,0,0,-1,0,0,0,0,0,1],[-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]]\n", "\n", "v5_df = pd.DataFrame(v5, columns=[\"v1\",\"v2\", \"v3\",\"v4\",\"v5\",\"v6\",\"v7\",\"v8\",\"v9\",\"v10\"], index=[\"F\",\"A\",\"B\" ,\"C\"])\n", "v5_distmat=pd.DataFrame(squareform(pdist(v5)), columns=v5_df.index, index=v5_df.index)\n", "v5_distmat" ] }, { "cell_type": "markdown", "id": "5b49084d-4720-4e14-9021-8ef2be6f5a2c", "metadata": {}, "source": [ "## _Single (Nearest Point)_\n", "\n", "Usando o método _single_ obtemos o seguinte dendograma:" ] }, { "cell_type": "code", "execution_count": 4, "id": "7f259b78-b342-46e3-ad9e-f9045d0c48f2", "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR0AAAEdCAYAAAAxarN7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaIUlEQVR4nO3df3BU9b3/8ef7bCJJiASDAvJLCwwXhcqPBLGirQqiZeqAVvzV0aJWmDtXp9ipCtar3H5rZcp4/VVbDbfeqxTBoSr03hFBiYq3qLCCXH7Ir4ZEJQRFQyEhCUn28/0jMST8CJtk93MSeD1mdnJ2z9nPvnZ28+JzzoY95pxDRMSXIOwAInJqUemIiFcqHRHxSqUjIl6pdETEq5TmVrodH7f6oy0bmGOtva+InLw00xERr1Q6IuKVSkdEvFLpiIhXKh0R8UqlIyJeqXRExKtm/04nmcysEDgA1AI1zrncsLIkS25u7gwgLewcJ6nKaDQ6O+wQ0nLNlk5s4wetHjgyMCeezS53zu1t9YO0f2nRaHRW2CFORrm5ubPCziCtE9pMRzqOdjpjO7edFo9mYCeQtNIxs6nA1EY35Tnn8hpdd8ByM3PA80esk/ZFM7Y4tdMibFeSVjr1JdJckVzinNtlZt2Bt8xsi3NuZbLyiEj7ENqnV865XfU/vwReBy4MK4uI+BPKMR0z6wwEzrkD9cvjgV+HkUVOHZ6OTfk41tShjxuFdSC5B/C6mX2b4WXn3JshZZFTx0lxbKqjHzcKpXSccwXAsDAeW0TCpb9IFhGvmp/p/N/a1o88qfV3FZGTl2Y6IuKVSkdEvFLpiIhXKh0R8UqlIyJeqXRExCuVjoh41ezf6VSu3dLqgTu3+p4icjLTTEdEvFLpiIhXKh0R8UqlIyJeqXRExCuVjoh4pdIREa9UOiLiVbN/HFi0oaTVA5/f6nuKyMlMMx0R8UqlIyJeqXRExCuVjoh4pdIREa9UOiLilUpHRLxS6YiIV83+ceCmb8pbPbD+OFBEjkUzHRHxSqUjIl6pdETEK5WOiHgVWumY2dVmttXMdpjZjLByiIhfoZSOmUWAZ4EfUvdB181mpg+8RE4BYc10LgR2OOcKnHOHgIXAxJCyiIhHzf6dzuTSPdbagc1sKjC10U15zrm8+uXewOeN1n0BjG7tY4lIx9Fs6bRFfcHknXBDETmlhLV7tQvo2+h6n/rbROQkZ845/w9qlgJsA8ZSVzZrgFucc5s8xvD/xEU6jlYfWjmRpO1eNcc5V2NmdwPLgAjwgufCAWDRGT18P2TCTS7dQ+2v7wg7RptFHn6B2sW/DztGm0Um3Y3b8XHYMdrMBuYkbexQSgfAOfcG8EZYjy8i4dBfJIuIVyodEfFKpSMiXql0RMQrlY6IeKXSERGvVDoi4pVKR0S8UumIiFcqHRHxSqUjIl6pdETEK5WOiHil0hERr1Q6IuKVSkdEvFLpiIhXKh0R8Sq0rys92fUYezkjHvsNFolQMG8+W598JuxIzYukEEyZAZFUCALcp1Hce0uabGLDxmDjboADpQC4NStw694PI22zamMxJj/zCj26ZPLH2685av3S9dt59u2PMIzBvc5kzs1XhZDyxPaXlfPQ03PZXvQ5hvHo9KmMOG9Qw/oVH0R56s+LCCwgEgl4cOqt5AwZHGLi+Kh0kiEIGDlnNiuvvYGDxcWMy19G8dJlHNi6Lexkx1dbQ+ylOVBdBUGE4PaZuB0bYFdBk83cptW4N+eHFDI+8/53PQO6Z1NWeeiodYV79zH33Sjz//l6sjLS+LrsYAgJ4/No3ktcmjOMpx+czqHqGiqrqpqsv2j4UK64KAczY+vOz5g++ymWPv94SGnjp92rJMjOGUlZwU7Ki4pw1dV8/tpiek+4OuxYJ1Zd/6YOInWXDqhkXxnvbSnkx6POP+b6v6zexC3fu4CsjDQAumVm+IwXtwPlB4lu3ML14y8D4LTUFLpkdm6yTef0NMzqzhRzsLISS95ZYxJKM50kSD+7Jwd3FTdcP1hcTLeckSEmipMZwV2PQHZ33Jr8o2Y5AHZeDnbOIPh6D7HlC2B/aQhBj2/2f6/klxPGUF519CwHoPCrurw/+cNfqI3F+JcrR3PpP53jM2Jcvij5kuys05n5xPNs3VnEkIHf4cFpt5GRltZku7dWreHfX1zIN/v289ys+7xkM7N+zrnPWnv/NpVObm7uDCDthBu2Q9FoNOwI7Y9zxPJmQad0ghvvxp3VG746fOJVt+0T3MaPoLYGG/kDgok/IzZvTnh5j/DupzvJzsxgSJ/urP77F8fcpjbmKNq7j/+adi17/lHGbc+9xuJ7b6FLeifPaZtXE4uxeUchD02bwrDBA3n0+ReZu+iv/PzWG5psd+XFo7jy4lGs2fgpT89bxH/+9lcJeXwzmwpMbXRTXv2pwgEWAyPrt3vVOffjlozd1plOWjQandXGMcLySLIGrthdQkbvXg3XM3r1omJ3SbIeLvGqKnCFW7CBQ3GNSoeK8oZFt24lNm5yCOGOb23hbt7ZXMDKrYVUVddSXnWI+xcu53c3jW/YpkdWJhf07UFqJEKf7CzOObMrRXv38d2+7evEiz27ZdPjzGyGDR4IwFVjRjN30V+Pu/2ooefxecmXlP5jP2dkdWnz49cXTN5xVjfej+vf0rF1TCcJSteuI3NAfzL69cNSU+l73SSKly4LO1bzMk6HTul1yympWP8huL1HFGVm1uHlQSNg725/+eLwix9ezDu/uoO3Z0zh8VuuYvSAPk0KB2DskP6sKagr0tLyCor27qNvdtt/SRPtrOyunH1WNwq+qNtN/2D9Rgb0691km6LiEr49LfimHTs5VFND1y6n+4jnjrMcFx3TSQJXW8u6+2fy/VcXYpEIO+cvYP+WrWHHal5mFsHEOyEIwAy3eQ1sX49dNglXXAjbPsEuHIcNGg6xGFSWEVvyp5BDx+eZ5R8ypE93rji/P5cM6seqbZ/xo8f/TCQI+OWEMXTtnB52xGN6aNpPuW/Os1TX1NC3Z3d+O30aC994G4CbJoxj+d9WsyT/fVIiKXTqlMoTD9zTcGA5yYaZ2X7qZjzp9cvUX3fOuWZb3L5tytbIzc2d1YF3r5zOZd5+6Fzm7YsNzElae2n3SkS8UumIiFcqHRHxSqUjIl6pdETEK5WOiHil0hERr1Q6IuKVSkdEvFLpiIhXKh0R8UqlIyJeqXRExCuVjoh4pdIREa9UOiLilUpHRLxS6YiIVyodEfFKpSMiXp3SX8wedgCRdixpX8x+Sp+C5mQ5i4LOatF+RB5+4aR5Hsmi3SsR8UqlIyJeqXRExCuVjoh4pdIREa9UOiLilUpHRLxS6YiIVyodEfFKpSMiXql0RMQrlY6IeKXSERGvVDoi4pVKR0S8UumIiFcqHRHxSqUjIl6pdETEq1P6O5ITIpJCMGUGRFIhCHCfRnHvLWmyiQ0bg427AQ6UAuDWrMCtez+MtC3WY+zljHjsN1gkQsG8+Wx98pmwIzUvntcj5zIs9wpwMThURex/XoS9xSEFPo6T+H2l0mmr2hpiL82B6ioIIgS3z8Tt2AC7Cpps5jatxr05P6SQrRQEjJwzm5XX3sDB4mLG5S+jeOkyDmzdFnay44vj9XAbPsR9/G7dlUHDCcbfSOzlJ8LJezwn8ftKu1eJUF1V9zOI1F1OEtk5Iykr2El5URGuuprPX1tM7wlXhx3rxE70ehyqbFi01E6eQrXCSfq+0kwnEcwI7noEsrvj1uQf9a8RgJ2Xg50zCL7eQ2z5AthfGkLQlkk/uycHdx3e7ThYXEy3nJEhJopTPK9H7hXYReMhkkJs3u9CCBmHDvS+MrMzga9dHCfSS0jp5ObmzgDSEjGWL9FoNHGDOUcsbxZ0Sie48W7cWb3hq12HV2/7BLfxI6itwUb+gGDiz4jNm5O4x5emTvB6ALhoPi6ajw0djV16DW7Jn8LJ2pwQ31dmNhWY2uimPOdcXv26i4DZwDfA/wPmAWcCgZnd5px7s7mxEzXTSeuAZ/p8JOEjVlXgCrdgA4fiGr/JK8obFt26ldi4yQl/6GSo2F1CRu9eDdczevWiYndJiIla6HivRyNu42qCCbe279O9hvC+qi+YvOOs/j3wIJAF5AM/dM59aGaDgQVAs6WjYzptlXE6dEqvW05JxfoPwe094hczM+vw8qARsHe3v3xtULp2HZkD+pPRrx+Wmkrf6yZRvHRZ2LGaF8/rkd398PKgC+CbL/3li1f7fl+lOOeWO+cWASXOuQ8BnHNb4rpzUqOdCjKzCCbeCUEAZrjNa2D7euyySbjiQtj2CXbhOGzQcIjFoLKMWHucyh+Dq61l3f0z+f6rC7FIhJ3zF7B/y9awYzUvntdj1FjsO+dDrBYqy4kt+Y+wUx+tfb+vYo2WK45Y5+eYzintyy+Izf23o2527y4+vJz/Ki7/VY+hEqfkrRW8+daKsGPEL57XY9mC9r07Be39fTXMzPYDBqTXL1N//YTHdlU6ItIizrk2fX6vYzoi4pVKR0S8UumIiFcqHRHxSqUjIl6pdETEK5WOiHil0hERr1Q6IuKVSkdEvFLpiIhXKh0R8UqlIyJeqXRExCuVjoh4pdIREa9UOiLilUpHRLxS6YiIV6f0dyRHHn4h7AgJMbl0T9gREuJkeT1OlueRLKd06dQu/n3YEdosMuluan99R9gx2izy8AssOqNH2DHabHLpHsonXRx2jDbrvHhV0sbW7pWIeKXSERGvVDoi4pVKR0S8UumIiFcqHRHxSqUjIl6pdETEK5WOiHil0hERr1Q6IuJVW0unMjc3dxZwbtujiMipoE3/4TMajc4GqC8eEZET0u6ViHil0hERr1Q6IuKVSkdEvFLpiIhXKh0R8eqU/o7kRKqNxZj8zCv06JLJH2+/5qj1S9dv59m3P8IwBvc6kzk3XxVCymZEUgimzIBIKgQB7tMo7r0lTTaxnMuw3CvAxeBQFbH/eRH2FocUOH49xl7OiMd+g0UiFMybz9Ynnwk7Usulnkbao3+A1FQsEqFm1TtUL/xT2KlaRaWTIPP+dz0DumdTVnnoqHWFe/cx990o8//5erIy0vi67GAICU+gtobYS3OgugqCCMHtM3E7NsCugoZN3IYPcR+/W3dl0HCC8TcSe/mJcPLGKwgYOWc2K6+9gYPFxYzLX0bx0mUc2Lot7GQtU32IyofvgcoKiERIe+w5atd+SGzbprCTtZh2rxKgZF8Z720p5Mejzj/m+r+s3sQt37uArIw0ALplZviMF7/qqrqfQaTucqRDlQ2LltrJU6i2yc4ZSVnBTsqLinDV1Xz+2mJ6T7g67FitU1lR9zOSUndxLtw8jZjZJWb2bDzbaqaTALP/eyW/nDCG8qqjZzkAhV+VAvCTP/yF2liMf7lyNJf+0zk+I8bHjOCuRyC7O25NfpNZTsMmuVdgF42HSAqxeb8LIWTLpJ/dk4O7Du8CHiwuplvOyBATtUEQkPb4CwQ9+1C99DVi2zeHGsfMRgC3AJOBncBr8dwvKaWTm5s7A0hLxtiJEo1GEzLOu5/uJDszgyF9urP6718cc5vamKNo7z7+a9q17PlHGbc99xqL772FLuntbLbgHLG8WdApneDGu3Fn9YavdjXdJJqPi+ZjQ0djl16DW9Ixjyt0SLEYlfdOgc6ZpM14jJp+/XGfHf0PQyKY2VRgaqOb8pxzeWY2CLi5/rIXeAUw59zl8Y6drJlOWjQanZWksRPlkUQMsrZwN+9sLmDl1kKqqmsprzrE/QuX87ubxjds0yMrkwv69iA1EqFPdhbnnNmVor37+G7fdnpyuaoKXOEWbOBQ3BGl8y23cTXBhFtpPxP8Y6vYXUJG714N1zN69aJid0mIiRKgvIzaDWuJjBhNTZJKxzmXB+QdY9UW4H3gR865HQBmdm9LxtYxnTb6xQ8v5p1f3cHbM6bw+C1XMXpAnyaFAzB2SH/WFNT98paWV1C0dx99s7uEEff4Mk6HTul1yympWP8huL1H/HJmdz+8POgC+OZLf/laqXTtOjIH9CejXz8sNZW+102ieOmysGO1XJeu0Dmzbvm004gMH4XbVRRGkuuA3cA7ZjbXzMYC1pIBdEwnSZ5Z/iFD+nTnivP7c8mgfqza9hk/evzPRIKAX04YQ9fO6WFHbCozi2DinRAEYIbbvAa2r8cum4QrLoRtn2CjxmLfOR9itVBZTmzJf4Sd+oRcbS3r7p/J919diEUi7Jy/gP1btoYdq8XsjG50+vm/YkEAFlDztxXURpN36t/jcc4tBhabWWdgIjAd6G5mfwRed84tP9EYKp0EunBAHy4c0AeAe8Zf1HC7mfHANZfyAJeGFe3EvvyC2Nx/O+pm9+7iw8vLFrT73aljKXlrBW++tSLsGG3iiv5O5S+mhB2jgXOuHHgZeNnMzqDuYPIDwAlLR7tXItImzrlS51yec25sPNurdETEK5WOiHil0hERr1Q6IuKVSkdEvFLpiIhXKh0R8UqlIyJeqXRExCuVjoh4pdIREa9UOiLilUpHRLxS6YiIVyodEfFKpSMiXql0RMQrlY6IeKXSERGvzCXg1KTHOLneudFodEqbB06ujvgd4yK+tOi0Mi2RkLNBRKPR2Y2v5+bmzkrEuMnmdnwcdoQ2s4E51P76jrBjtFnk4Rcon3Rx2DHarPPiVSw6o52eRLEFJpfuSdrY2r0SEa9UOiLilUpHRLxS6YiIVyodEfFKpSMiXql0RMQrlY6IeKXSERGvVDoi4pVKR0S8UumIiFcqHRHxSqUjIl6pdETEK5WOiHil0hERr1Q6IuKVSkdEvErIdySf6vaXlfPQ03PZXvQ5hvHo9KmMOG9Qw/oVH0R56s+LCCwgEgl4cOqt5AwZHGLiY4ikEEyZAZFUCALcp1Hce0uabGLDxmDjboADpQC4NStw694PI238Uk8j7dE/QGoqFolQs+odqhf+KexUrdJj7OWMeOw3WCRCwbz5bH3ymbAjtYpKJwEezXuJS3OG8fSD0zlUXUNlVVWT9RcNH8oVF+VgZmzd+RnTZz/F0ucfDyntcdTWEHtpDlRXQRAhuH0mbscG2FXQZDO3aTXuzfkhhWyF6kNUPnwPVFZAJELaY89Ru/ZDYts2hZ2sZYKAkXNms/LaGzhYXMy4/GUUL13Gga3bwk7WYtq9aqMD5QeJbtzC9eMvA+C01BS6ZHZusk3n9DTM6s7ocbCyEkve2T3aprq+LINI3eVkUVlR9zOSUndJwGmXfMvOGUlZwU7Ki4pw1dV8/tpiek+42nsOMxtoZmOOcfsYMxsQzxia6bTRFyVfkp11OjOfeJ6tO4sYMvA7PDjtNjLS0pps99aqNfz7iwv5Zt9+npt1X0hpT8CM4K5HILs7bk3+UbMcADsvBztnEHy9h9jyBbC/NISgLRQEpD3+AkHPPlQvfY3Y9s1hJ2qx9LN7cnBXccP1g8XFdMsZGUaUJ4GZx7h9f/26a040QLJKp7K9n/sqGo0mZJyaWIzNOwp5aNoUhg0eyKPPv8jcRX/l57fe0GS7Ky8exZUXj2LNxk95et4i/vO3v0rI4yeUc8TyZkGndIIb78ad1Ru+2nV49bZPcBs/gtoabOQPCCb+jNi8OeHljVcsRuW9U6BzJmkzHqOmX3/cZ0cXqhxmZlOBqY1uynPO5QE9nHMbjtzeObfBzM6NZ+yklM6RJ99rpx5JxCA9u2XT48xshg0eCMBVY0Yzd9Ffj7v9qKHn8XnJl5T+Yz9nZHVJRITEq6rAFW7BBg7FNSodKsobFt26ldi4ySGEa4PyMmo3rCUyYjQ1Hax0KnaXkNG7V8P1jF69qNhdkrTHqy+YvGOs6trM3dLjGVvHdNrorOyunH1WNwq+qJv6frB+IwP69W6yTVFxCd+evnnTjp0cqqmha5fTvWdtVsbp0Kn+PZOSivUfgtt7xJs6M+vw8qARsHe3v3yt1aUrdM6sWz7tNCLDR+F2FYUaqTVK164jc0B/Mvr1w1JT6XvdJIqXLgsjStTM7jryRjP7GRDXKXN1TCcBHpr2U+6b8yzVNTX07dmd306fxsI33gbgpgnjWP631SzJf5+USAqdOqXyxAP3NBxYbjcyswgm3glBAGa4zWtg+3rsskm44kLY9gl24Ths0HCIxaCyjNiS9v/Rs53RjU4//1csCMACav62gtroqrBjtZirrWXd/TP5/qsLsUiEnfMXsH/L1jCiTAdeN7OfcLhkcoHTgGvjGcBcBzySnyBO5zJvP3Qu8/ZlcumeZv9VNLPLgaH1Vzc55/LjHVszHRFpMefcO8A7rbmvjumIiFcqHRHxSqUjIl6pdETEK5WOiHil0hERr1Q6IuKVSkdEvFLpiIhXKh0R8UqlIyJeqXRExCuVjoh4pdIREa9UOiLilUpHRLxS6YiIVyodEfFKpSMiXp3KX8yedGY2tf78QR2ankf70tGfh2Y6yTX1xJt0CHoe7UuHfh4qHRHxSqUjIl6pdJKrw+53H0HPo33p0M9DB5JFxCvNdETEK5WOiHil0kkCM6s1s08aXc4NO1NrNHoe681srZldHHam1jKzSWbmzGxw2Flay8x6mtlCM/u7mX1sZm+Y2aCwc7WUjukkgZmVOecyw87RVo2fh5ldBTzonPtByLFaxcxeAXoB+c65R8LO01JmZsAq4EXn3HP1tw0Dujjn3g81XAtppiPx6gKUhh2iNcwsE7gEuBO4KeQ4rXU5UP1t4QA459Z3tMIBSAk7wEkq3cw+qV/e6Zy7NswwbfDt80gDzgauCDdOq00E3nTObTOzr80sxzn3cdihWmgo0NEyH5NKJzkqnHPDww6RAA3Pw8y+B7xkZkNdx9snvxl4qn55Yf31k+IXuCNS6UhcnHMfmNmZwFnAl2HniZeZZVM3Q/uumTkgAjgzu6+Dlecm4PqwQySCjulIXOo/9YkAX4edpYWuB+Y5585xzp3rnOsL7AQuDTlXS+UDncys4T97mtkFZtbRnodKR5qV/u3H/sArwE+dc7UhZ2qpm4HXj7jt1frbO4z6Wdm1wLj6j8w3AY8BJeEmazl9ZC4iXmmmIyJeqXRExCuVjoh4pdIREa9UOiLilUpHRLxS6YiIV/8fHqQ/2hVJ/7QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "v5_distmat_link = hc.linkage(pdist(v5_df))\n", "\n", "sns.clustermap(\n", " v5_distmat,\n", " annot = True,\n", " cmap=sns.color_palette(\"Reds_r\"),\n", " linewidth=1,\n", " row_linkage=v5_distmat_link,\n", " col_linkage=v5_distmat_link,\n", " figsize=(4,4)\n", ")\n", "plt.title('Simple clustering method')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "a1018a9b-0898-4e3b-9b0f-2db71f99853a", "metadata": {}, "source": [ "## _Average (UPGMA)_\n", "\n", "Usando UPGMA não há alterações (neste caso muito simples, porque o mais provável é existirem quando aplicadas a dados reais com maior número de observações e dimensões); os agrupamentos tendem a ser feitos de forma recursiva, por separação de elementos individuais até à identificação de um par final:" ] }, { "cell_type": "code", "execution_count": 8, "id": "a007b172-160b-4e32-a028-b9b3a9588f90", "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEtCAYAAAAIrhf1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkaklEQVR4nO3de3hU9b3v8fd3JoEQImAQUG5a4FAVKgJBrJd6Q23ZdYPd4nWreMOzn61H29MqWreyrVZO2W5bL62GXVtFFIsXtH2KoCJiRYWRSxUFRCAiARQNRQKBJPM9f6yVMAkJmVzISsLn9TzzZM1av/Vb35k1WZ9ZvzWZmLsjIiISi7oAERFpGRQIIiICKBBERCSkQBAREUCBICIiIQWCiIgAB3EgmNmxZpYwM4u6lvoys/PM7NkGrjvezP7W1DU1hJmtMLPTo66jvsxskpk91UR9tZj9IZJ2IJjZfDMrMrP2B7KgZvQL4L88/EMMM3MzG5DaIPUX38xON7Okme0ws2/MbJWZXZXStp2Z3RnOLzazjWY228zOSWmz3sz2mNlh1bazNNz+UTVs381sZOp8d/8zMMjMjmui56Leanq+6svdB7n7/CYq6YAI9/vnUdch0hzSCoTwQHUq4MA/N3URZpbR1H3Wsb0jgDOAWfVctdDdc4BOwK3AVDM7Nlz2HDAGuAI4FPgW8Bvgn6r1sQ64JKWW7wDZNdRoYV9fhz+rewaYUM/6W4Tm3t8ikp50zxCuAN4F/ghcCWBm7c1sm5kNrmhkZt3MbJeZdQ/v/9DMloXtFqa+ow3fLd9qZn8His0sw8wmmtmn4Tvwj8zs/JT2cTO738y2mtk6M7shfJeaES7vbGa/N7NN4bvze8wsXsvjORtY4u4l6T9Ve3lgFlAEHGtmo8I+x7j7e+6+J7y94u43VVt9GlUP8FcCT9awmVOBI4D/A1xsZu2qLZ/PvmFTycz6mNkLZvalmX1lZg/X0Oao1OcwnDffzK4NpweY2Ztm9o/weX82nL8gbL48PGO6KJxf3/29PnzuKs6G/mRmT4b7f4WZ5aWsPyw8k/rGzGaa2bNmdk8tj328mb1tZg+Etaw1s5PC+RvM7AszuzKlfXsz+y8z+8zMtpjZo2bWwcw6ArOBnuHj3GFmPcPV2u2n1mPC53FbuOyfU5Z1NbOXzWy7mS0C+te2D0WaW30CYXp4O9fMerj7buAFUt7tAhcCb7r7F2Y2FHgcuB7oCjwGvGxVh5wuITiodXH3MuBTggNhZ+A/gafCd/MA1wE/AI4HhgFjq9X4R6AMGAAMBc4Brq3l8XwHWJXmY9+HmcXCsOoCfACMAt5z93SGFt4FOoUHjThwMVDTePSVwJ+BP4X3z6u2/GPgKDPrVEN9ceAvQAFwFNALmJFGbdX9AphLcMbTG3gIwN2/Fy4f4u457v5sA/d3df8c1tkFeBl4OHw87YAXCfZxLsHZ0fk1rJ9qJPD3sJanw35HELw+/hV42MxywraTgYEEr60BBM/Xne5eTPCaKwwfZ467F9ZRaybBfpsLdAduBKab2bfD9R4BSgjC/urwJtIyuPt+b8ApQClwWHh/JfDjcHoU8GlK27eBK8Lp3wG/qNbXKuC0cHo9cHUd215G8K4bYB5wfcqyUQRDWBlAD2A30CFl+SXAG7X0OxWYXG2eAwOqzZsEPBVOnw4kgW0EwzjLgIvDZf8DzEhZLzds9w+gJGX++rDuO4D7gO8Dr4aPwYGjwnbZwHZgbHj/MeClarVlhuv0reHxfRf4EsioYdl44G/h9FEVz2HK8vnAteH0k0A+0LuGfqo8Xw3Z3xXPR8pz/VrKsmOBXeH094CNgKUs/xtwTy37dzzwScr974T19kiZ9xVBABhQDPSv9vytS9nvn9fwuqit1lOBzUAsZfkz4Tpxgt+lo1OW/bJif+imW9S3dMZyrwTmuvvW8P7T4bwHgDeAbAsuem4Jf8FeDNsdCVxpZjem9NUO6Jlyf0PqhszsCuAnBAcqgByg4gJsz2rtU6ePJDhAbrK9HxqKVe8/RRFwSLV55WEfqTIJfoErFLp77xr6+wr4XxV33P1roIsFF10/qaH9NGABwXWGmoaLzic42/lreH868JqZdXP3L8N5FfVvq2H9PkCB1/wuvD5uIThLWGRmRcD97v54LW3rvb9rsDlleieQFQ5n9QQ2unvqNzHW1deWlOldAO5efV4O0I0ggN9Pee0YwcG7obVucPdkyvICgrOObgThv6HaMpEWYb+BYGYdCIaB4mZW8QvQnuBgN8Tdl5vZnwjejW8B/uLu34TtNgD3uvu9+9lE5S+4mR1J8M79LOAddy83s2UEv5wAmwiGLSr0SZneQHCGcFiaB8G/E14LSfEZQRB9nDLvW8DqNPp7HbjRzHp7GsNG7l5gZuuA0cA1NTS5kuBg9Vl4kDKCcLqU4EI1wDHAenffXsP6G4C+ZpZRx/NRHP6sOCMBODylzs0EQ3WY2SkEobTA3dfUss2093c9bQJ6mZmlhEIfgiHGxtpKEA6D3H1jDcvrW3Mh0MfMYimh0JfgdfQlQdD3ITjTrlgm0iLUdQ1hLME752MJ3v0fT3Ageou9F0afBi4CLgunK0wF/reZjbRARzP7JzOr/s68QkeCX74vASz4SOfglOV/Am4ys15m1oXgUz4AuPsmgjHb+82sUzjG39/MTqtlW68Cw8wsK2Xes8AdZtY7XH8Uwbj9c7X0Ucnd5xKcLc0KH2+7cCz5xP2sdg1wpgfj1JXMrBdBKP6Qvc/5EOD/UfVi9GkEFzxrsojgIDo5fN6zzOzkGur+kmAo5l8tuGh/NSkXOc1snJlVhHARwf6pOMhtAfqldFff/V0f7xC8Dm+w4GL0GOCEJuiX8KA9FXjA9n4YopeZnRs22QJ0NbPOaXb5HsEZwy1mlmnB31mcRzCkWE5w3W2SmWVb8Am16m9MRCJTVyBcCfzB3T9z980VN4ILaJeF70DfI3in2ZOUA5S7JwjeXT5McDBZQzC2WyN3/wi4n+CXfwvBuO/bKU2mEhz0/w4sJRhOKSM4UEBwsGwHfBRu7zmCC3c1bWsLwTWJMSmz7wYWEoxNFwG/Ai5z9w9rf3qqOJ/gQu5TBMM46whC8tyaGrv7p+FzVN3lwDJ3n1vtOX8QOM72fqrrEoJrCzX1XU5wEBpAcObzOUFo1+Q64GcEw16DCJ6DCiOA98xsB8GF05vcfW24bBLwRPhJmgvru7/rw933AD8iCNFtBBeF/0JwVtgUbiWo910z2w68Bnw73PZKgmsAa8PH2rP2biprPY/gYvRW4LcE19UqzghuIDj720xwkfwPTfQYRBrNqg7Lth5m9gPgUXc/soHrHws8AZzgrexJMLPzgMvd/cKoa4mKmb1HsP91QBVpIq0mEMLrGWcQnCX0AJ4H3nX3m6OsS5pHOPy3iuBd92XAo0C/cLhQRJpAa/ouIyP424QigiGjj4E7I61ImtO3geUEQ0b/F7hAYSDStFrNGYKIiBxYrekMQUREDiB9yVgr5Wveb9CpnQ0Y3uq+7ltEmofOEEREBFAgiIhISIEgIiKAAkFEREIKBBERARQIIiISUiCIiAigv0OQGpjZeuAbgm+SLXP3vP2v0frk5eVNBLLqbCgNUZJIJCZHXYTUnwKhlUp++E6D1osPGJ5u0zNS/kteW5SVSCQmRV1EW5SXlzcp6hqkYTRkJCIigALhoGNmE8wskXKbUEMzB+aa2fu1LBeRNkhDRgcZd88H8utodoq7bwz/peSrZrbS3Rc0Q3kiEiGdIcg+Kv7ZvLt/AbxIE/3/YhFp2RQIUoWZdTSzQyqmgXOAdP+vtIi0Yhoykup6AC+aGQSvj6fd/ZVoSxKR5qBAkCrcfS0wJOo6RKT5achIREQAnSG0Xn9f0rD1xjZpFSLShugMQUREAAWCiIiEFAgiIgLoGoJIq9ZCv7X1qBb6BXf6FtY6KBBEWjd9a2uaWmhItSgaMhIREUCBICIiIQ0ZtVIlS1Y2aL2OTVyHSFNopmshB/raRqu/RqFAEJGWoNVfC2kL1yg0ZCQiIoACQUREQgoEEREBFAgiIhJSIIiICKBAEBGRkAJBREQA/R1Cq1XwweYGrXdsE9chIm2HzhBERARQIIiISEiBICIigAJBRERCCgQREQEUCCIiElIgiIgIoEAQEZGQ/jCtlVrxdXGD1tMfpolIbXSGICIigAJBRERCCgQREQEUCCIiElIgyD7M7PtmtsrM1pjZxKjrEZHmoUCQKswsDjwC/IDgQ0mXmJk+nCRyEFAgSHUnAGvcfa277wFmAGMirklEmoH+DqGVGle0xRqynplNACakzMp39/yU+72ADSn3PwdGNmRbItK6KBAOMuHBP7/OhiJy0NGQkVS3EeiTcr93OE9E2jhz96hrkBbEzDKA1cBZBEGwGLjU3Vc0Yxl6UYrUrEFDxenSkJFU4e5lZnYDMAeIA483cxgAMPPQHs29ySY3rmgL5XdfHXUZjRa/83HKZz0cdRmNFh97A77m/ajLaBQbMPyA9q9AkH24+1+Bv0Zdh4g0L11DEBERQIEgIiIhBYKIiAAKBBERCSkQREQEUCCIiEhIgSAiIoACQUREQgoEEREBFAgiIhJSIIiICKBAEBGRkAJBREQABYKIiIQUCCIiAigQREQkpEAQERFAgSAiIiH9C005qPQ46wyG3ncPFo+zdtp0Vv36oahLqls8g9j4iRDPhFgM/ziBv/lSlSY25GRs1IXwTREAvvh1fOlbUVS7X+XJJOMeepYenXL43VXn7bN89vJPeOS19zCMo3sexpRLzo2gyv3bvqOYOx6cyicFGzCMe2+ewNBjBlYuf/2dBL95aiYxixGPx7h9wuUMH3R0hBWnT4EgB49YjGFTJrPg/AvZWVjIqHlzKJw9h29WrY66sv0rLyP55BQo3Q2xOLGrbsPXfAAb11Zp5isW4a9Mj6jI9Ez723L6d89lR8mefZat37qNqfMTTP+3C+icncVXO3ZGUGHd7s1/klOHD+HB229mT2kZJbt3V1l+4vGDOfPE4ZgZq9Z9xs2Tf8Psx+6PqNr60ZCRHDRyhw9jx9p1FBcU4KWlbHhhFr1Gfz/qstJTGh50YvHg1gpt3raDN1eu519GHFvj8ucWreDS7x5H5+wsALrmZDdneWn5pngniQ9XcsE5pwPQLjODTjkdq7Tp2CELMwNgZ0kJhjV3mQ2mMwQ5aHQ44nB2biysvL+zsJCuw4dFWFE9mBG77i7I7Y4vnrfP2QGAHTMcO3IgfLWF5NxnYHtRBIXWbvKfF/DT0SdTvHvfswOA9V8G9V722+coTyb597NHcuq3j2zOEuv0+eYvyO18CLc98Bir1hUwaMC3uP36K8jOyqrS7tWFi/nvJ2bw9bbtPDrpZ81Sm5n1dffPGtOHAqENysvLmwhk1dmwhUokElGX0PK4k8yfBO07ELvoBrxbL/hy497Fq5fhH74H5WXYsNOIjbmW5LQp0dVbzfyP15Gbk82g3t1Z9OnnNbYpTzoFW7fxx+vPZ8s/dnDFoy8w68eX0qlD+2autnZlySQfrVnPHdePZ8jRA7j3sSeYOvNlbrr8wirtzj5pBGefNILFH37Mg9Nm8odf/rxJtm9mE4AJKbPy3T0/nJ4FDAvbPe/u/1Lf/hUIbVNWIpGYFHURjXDXgeh016bNZPfqWXk/u2dPdm3afCA2deDs3oWvX4kNGIynBAK7iisnfekCbNS4CIqr3ZL1m3jjo7UsWLWe3aXlFO/ewy0z5vKri8+pbNOjcw7H9elBZjxO79zOHHlYFwq2buM7fXpEWHlVh3fNpcdhuQw5egAA5548kqkzX661/YjBx7Bh8xcU/WM7h3bu1Ojthwf//FoWp45N9WtI/7qGIAeNoiVLyenfj+y+fbHMTPr8aCyFs+dEXVbdsg+B9h2C6YxMrN8gfGu1IMvpvHd64FDYuqn56kvDT35wEm/8/Gpemzie+y89l5H9e1cJA4CzBvVj8dog5IqKd1GwdRt9cht/EG1K3XK7cES3rqz9PBh6fGf5h/Tv26tKm4LCzbg7ACvWrGNPWRldOh3SHOV5LdNp0xmCHDS8vJylt9zG956fgcXjrJv+DNtXroq6rLrldCY25hqIxcAM/2gxfLIcO30sXrgeVi/DThiFDTwekkko2UHypd9HXHR6Hpr7LoN6d+fMY/txysC+LFz9GT+8/ynisRg/HX0yXTp2iLrEfdxx/ZX8bMojlJaV0efw7vzy5uuZ8dfXALh49Cjmvr2Il+a9RUY8g/btM3ng1hsrLzIfYEPMbDvBmUKHcJrwvrt7nelqFUkmbUdeXt6kVj5k5DMPbTnDBA01rmgL5XdfHXUZjRa/83HKZz0cdRmNFh97A77m/ajLaBQbMPyAJouGjEREBFAgiIhISIEgIiKAAkFEREIKBBERARQIIiISUiCIiAigQBARkZACQUREAAWCiIiEFAgiIgIoEEREJKRAEBERQIEgIiIhBYKIiAAKBBERCSkQREQEUCCIiEhIgSAiIoACQUREQubuUdcgTSwvL29SIpGYFHUdjaAXpUjN7EB2nnEgOxdpqPK7r466hEaL3/k4Mw/tEXUZjTauaEub2R+t/XHE73z8gPavISMREQEUCCIiElIgiIgIoEAQEZGQAkFERAAFgoiIhBQIIiICKBBERCSkQBAREUCBICIiIQWCiIgACgQREQkpEEREBFAgiIhISIEgIiKAAkFEREIKBBERARQIIiISUiCIiAig/6ksbVk8g9j4iRDPhFgM/ziBv/lSlSY25GRs1IXwTREAvvh1fOlbUVRbLz3OOoOh992DxeOsnTadVb9+KOqS9i+dfTH8dCzvTPAk7NlN8i9PwNbCiAquRRt+TYECQdqy8jKST06B0t0QixO76jZ8zQewcW2VZr5iEf7K9IiKbIBYjGFTJrPg/AvZWVjIqHlzKJw9h29WrY66stqlsS/8g3fx9+cHdwYeT+yci0g+/UA09damrb6mQhoykratdHfwMxYPbm1A7vBh7Fi7juKCAry0lA0vzKLX6O9HXVbd6toXe0oqJy2zfTMV1QBt8DVVQWcI0raZEbvuLsjtji+et887OQA7Zjh25ED4agvJuc/A9qIICk1fhyMOZ+fGvUMpOwsL6Tp8WIQVpSmdfZF3JnbiORDPIDntVxEUmYZW9Joys8OAr9zd02mvQJBKeXl5E4GsqOtIJBJN15k7yfxJ0L4DsYtuwLv1gi837l28ehn+4XtQXoYNO43YmGtJTpvSdNuXverYFwCemIcn5mGDR2Knnoe/9Ptoat2fCF9TZjYBmJAyK9/d88NlJwKTga+BXwDTgMOAmJld4e6v1NW/AkFSZSUSiUlRFwHc1eQ97t6Fr1+JDRiMpx6EdhVXTvrSBdiocU2+6aa2a9Nmsnv1rLyf3bMnuzZtjrCieqptX6TwDxcRG305ab2tjUoEr6nw4J9fy+KHgduBzsA84Afu/q6ZHQ08A9QZCLqGIG1X9iHQvkMwnZGJ9RuEb6124MzpvHd64FDYuqn56mugoiVLyenfj+y+fbHMTPr8aCyFs+dEXdb+pbMvcrvvnR54HHz9RfPVl66W/ZrKcPe57j4T2Ozu7wK4+8q0OzhgpYlELaczsTHXQCwGZvhHi+GT5djpY/HC9bB6GXbCKGzg8ZBMQskOki1xiKIaLy9n6S238b3nZ2DxOOumP8P2lauiLmv/0tkXI87CvnUsJMuhpJjkS/8TddX7atmvqWTK9K5qy3QNQQ5yX3xOcup/7jPb58/aOz3veXze881YVNPY/OrrvPLq61GXkb509sWcZ1r2EBG09NfUEDPbDhjQIZwmvJ/WtUEFgohIG+Dujf4MrK4hiIgIoEAQEZGQAkFERAAFgoiIhBQIIiICKBBERCSkQBAREUCBICIiIQWCiIgACgQREQkpEEREBFAgiIhISIEgIiKAAkFEREIKBBERARQIIiISUiCIiAigQBARkZACQUREAP1PZWmh4nc+HnUJTWJc0ZaoS2gSbWV/tJXHcaAoEKRFKp/1cNQlNFp87A2U33111GU0WvzOx5l5aI+oy2i0cUVbKB57UtRlNErHWQsPaP8aMhIREUCBICIiIQWCiIgACgQREQkpEEREBFAgiIhISIEgIiKAAkFEREIKBBERARQIIiISUiCIiAig7zJqq0ry8vImNWC9o5q4DhFpRRQIbVAikZjckPUaGCIi0kZoyEhERAAFgoiIhBQIIiICKBBERCSkQBAREUCBICIiIX3sVNq08mSScQ89S49OOfzuqvP2WT57+Sc88tp7GMbRPQ9jyiXnRlBlHeIZxMZPhHgmxGL4xwn8zZeqNLHhp2N5Z4InYc9ukn95ArYWRlRw+nqcdQZD77sHi8dZO206q379UNQl1V9mO7Lu/S1kZmLxOGUL36B0xu+jrqpBFAjSpk3723L6d89lR8mefZat37qNqfMTTP+3C+icncVXO3ZGUGEaystIPjkFSndDLE7sqtvwNR/AxrWVTfyDd/H35wd3Bh5P7JyLSD79QDT1pisWY9iUySw4/0J2FhYyat4cCmfP4ZtVq6OurH5K91By541QsgvicbLue5TyJe+SXL0i6srqTUNG0mZt3raDN1eu519GHFvj8ucWreDS7x5H5+wsALrmZDdnefVTujv4GYsHt+r2lFROWmb7ZiqqcXKHD2PH2nUUFxTgpaVseGEWvUZ/P+qyGqZkV/AznhHc3KOtJ2Rmp5jZI+m21xmCtFmT/7yAn44+meLd+54dAKz/sgiAy377HOXJJP9+9khO/faRzVli+syIXXcX5HbHF8+rcnZQ2STvTOzEcyCeQXLaryIosn46HHE4OzfuHdbaWVhI1+HDIqyoEWIxsu5/nNjhvSmd/QLJTz6KrBQzGwpcCowD1gEvpLuuAkFqlZeXNxHIau7tJhKJRvcx/+N15OZkM6h3dxZ9+nmNbcqTTsHWbfzx+vPZ8o8dXPHoC8z68aV06tAC32G7k8yfBO07ELvoBrxbL/hyY9UmiXl4Yh42eCR26nn4S61zHLtVSiYp+fF46JhD1sT7KOvbD/9s39BuLDObAExImZXv7vlmNhC4JLxtBZ4FzN3PqE//CgTZn6xEIjEpgu3e1dgOlqzfxBsfrWXBqvXsLi2nePcebpkxl19dfE5lmx6dcziuTw8y43F653bmyMO6ULB1G9/p06Oxmz9wdu/C16/EBgzGqwVCBf9wEbHRl9MyBi1qt2vTZrJ79ay8n92zJ7s2bY6woiZQvIPyD5YQHzqSsgMQCO6eD+TXsGgl8BbwQ3dfA2BmP65v/7qGIG3ST35wEm/8/Gpemzie+y89l5H9e1cJA4CzBvVj8drgoFpUvIuCrdvok9spinL3L/sQaN8hmM7IxPoNwrdWO3Dmdt87PfA4+PqL5quvgYqWLCWnfz+y+/bFMjPp86OxFM6eE3VZ9depC3TMCabbtSN+/Ah8Y0FzV/EjYBPwhplNNbOzAKtvJzpDkIPKQ3PfZVDv7px5bD9OGdiXhas/44f3P0U8FuOno0+mS8cOUZe4r5zOxMZcA7EYmOEfLYZPlmOnj8UL18PqZdiIs7BvHQvJcigpJvnS/0RddZ28vJylt9zG956fgcXjrJv+DNtXroq6rHqzQ7vS/qb/wGIxsBhlb79OeWJhs9bg7rOAWWbWERgD3Ax0N7PfAS+6+9x0+lEgSJt3Qv/enNC/NwA3nnNi5Xwz49bzTuVWTo2qtPR88TnJqf+5z2yfP2vv9JxnWvwQUU02v/o6r7z6etRlNIoXfErJT8ZHXQYA7l4MPA08bWaHElxYvhVIKxA0ZCQi0ga5e5G757v7Wemuo0AQERFAgSAiIiEFgoiIAAoEEREJKRBERARQIIiISEiBICIigAJBRERCCgQREQEUCCIiElIgiIgIoEAQEZGQAkFERAAFgoiIhBQIIiICKBBERCSkQBAREUCBICIiIQWCiIgAYO6t8V9zy4GQl5c3EchKmXVUIpEYH0EpelGK1MwOZOcZB7JzaV0SicTk1Pt5eXmTIioFX/N+VJtuMjZgOOV3Xx11GY0Wv/NxiseeFHUZjdZx1kJmHtoj6jIaZVzRlgPav4aMREQEUCCIiEhIgSAiIoACQUREQgoEEREBFAgiIhJSIIiICKBAEBGRkAJBREQABYKIiIQUCCIiAigQREQkpEAQERFAgSAiIiEFgoiIAAoEEREJKRBERARQIIiISEiBICIigP6nsrRx23cUc8eDU/mkYAOGce/NExh6zMDK5a+/k+A3T80kZjHi8Ri3T7ic4YOOjrDiGsQziI2fCPFMiMXwjxP4my9VaWJDTsZGXQjfFAHgi1/Hl74VRbXpy2xH1r2/hcxMLB6nbOEblM74fdRVNUiPs85g6H33YPE4a6dNZ9WvH4q6pAZRIEibdm/+k5w6fAgP3n4ze0rLKNm9u8ryE48fzJknDsfMWLXuM26e/BtmP3Z/RNXWoryM5JNToHQ3xOLErroNX/MBbFxbpZmvWIS/Mj2iIhugdA8ld94IJbsgHifrvkcpX/IuydUroq6sfmIxhk2ZzILzL2RnYSGj5s2hcPYcvlm1OurK6k1DRtJmfVO8k8SHK7ngnNMBaJeZQaecjlXadOyQhZkBsLOkBMOau8z0lIZBFosHt7aiZFfwM54R3NyjracBcocPY8fadRQXFOClpWx4YRa9Rn+/2eswswFmdnIN8082s/7p9KEzBGmzPt/8BbmdD+G2Bx5j1boCBg34FrdffwXZWVlV2r26cDH//cQMvt62nUcn/SyiautgRuy6uyC3O7543j5nBwB2zHDsyIHw1RaSc5+B7UURFFpPsRhZ9z9O7PDelM5+geQnH0VdUb11OOJwdm4srLy/s7CQrsOHRVHKr4Hbapi/PVx2Xl0dKBBkf0ry8vImNfdGE4lEk/RTlkzy0Zr13HH9eIYcPYB7H3uCqTNf5qbLL6zS7uyTRnD2SSNY/OHHPDhtJn/45c+bZPtNyp1k/iRo34HYRTfg3XrBlxv3Ll69DP/wPSgvw4adRmzMtSSnTYmu3nQlk5T8eDx0zCFr4n2U9e2Hf7Zv2EnAzCYAE1Jm5bt7fjjdw90/qL6Ou39gZkel078CQWqVSCQmR7Tpu5qik8O75tLjsFyGHD0AgHNPHsnUmS/X2n7E4GPYsPkLiv6xnUM7d2qKEpre7l34+pXYgMF4SiCwq7hy0pcuwEaNi6C4RijeQfkHS4gPHUlZKwuEXZs2k92rZ+X97J492bVp8wHZVnjwz69lcZf9rNohnf51DUHarG65XTiiW1fWfh6czr+z/EP69+1VpU1B4WY8HLdesWYde8rK6NLpkGavdb+yD4H24e9zRibWbxC+tdoBJ6fz3umBQ2Hrpuarr6E6dYGOOcF0u3bEjx+BbyyItKSGKFqylJz+/cju2xfLzKTPj8ZSOHtOFKUkzOy66jPN7Frg/XQ60BmCtGl3XH8lP5vyCKVlZfQ5vDu/vPl6Zvz1NQAuHj2KuW8v4qV5b5ERz6B9+0weuPXGyovMLUZOZ2JjroFYDMzwjxbDJ8ux08fiheth9TLshFHYwOMhmYSSHSRfavkf37RDu9L+pv/AYjGwGGVvv055YmHUZdWbl5ez9Jbb+N7zM7B4nHXTn2H7ylVRlHIz8KKZXcbeAMgD2gHnp9OBeSu8qi9tnvuatN7QtGg2YDjld18ddRmNFr/zcYrHnhR1GY3WcdZCZh7aI+oyGmVc0ZY6362Y2RnA4PDuCnefl27/OkMQEWlD3P0N4I2GrKtrCCIiAigQREQkpEAQERFAgSAiIiEFgoiIAAoEEREJKRBERARQIIiISEiBICIigAJBRERCCgQREQEUCCIiElIgiIgIoEAQEZGQAkFERAAFgoiIhBQIIiICKBBERCSkQBAREQDM3aOuQaTZmdkEd8+Puo7G0uNoOdrCY9AZghysJkRdQBPR42g5Wv1jUCCIiAigQBARkZACQQ5WrXqsN4UeR8vR6h+DLiqLiAigMwQREQkpEEREBFAgyEHGzMrNbFnK7aioa6qvlMew3MyWmNlJUdfUUGY21szczI6OupbGMLPDzWyGmX1qZu+b2V/NbGDUddWXriHIQcXMdrh7TtR1NEbqYzCzc4Hb3f20iMtqEDN7FugJzHP3u6KupyHMzICFwBPu/mg4bwjQyd3firS4etIZgkjr1gkoirqIhjCzHOAU4Brg4ojLaYwzgNKKMABw9+WtLQwAMqIuQKSZdTCzZeH0Onc/P8piGqjiMWQBRwBnRltOg40BXnH31Wb2lZkNd/f3oy6qAQYDrbHufSgQ5GCzy92Pj7qIRqp8DGb2XeBJMxvsrW/89xLgN+H0jPB+mziwtlYKBJFWzN3fMbPDgG7AF1HXky4zyyU4s/mOmTkQB9zMftYKg20FcEHURTQFXUMQacXCT+fEga+irqWeLgCmufuR7n6Uu/cB1gGnRlxXQ8wD2ptZ5ZfbmdlxZtbqHosCQaT16VDxsVngWeBKdy+PuKb6ugR4sdq858P5rUp4RnM+MCr82OkK4D5gc7SV1Z8+dioiIoDOEEREJKRAEBERQIEgIiIhBYKIiAAKBBERCSkQREQEUCCIiEjo/wMnxEnyHR6SmwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "v5_distmat_link = hc.linkage(pdist(v5_df), method=\"average\")\n", "\n", "sns.clustermap(\n", " v5_distmat,\n", " annot = True,\n", " cmap=sns.color_palette(\"Reds_r\"),\n", " linewidth=1,\n", " row_linkage=v5_distmat_link,\n", " col_linkage=v5_distmat_link,\n", " figsize=(4,4)\n", ")\n", "plt.title('Average (UPGMA) clustering method')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "076f87d0-c033-4b6c-baf2-84e50bbd560c", "metadata": {}, "source": [ "## Método de Ward\n", "\n", "Com o método de Ward o resultado não é muito diferente mas tende a agrupar em _clusters_ de número e dimensões iguais e é por isso uma escolha muito popular *(Morse 1980)*; neste caso cria dois grupos de dois elementos, agrupando o novo partido pela consideração que faz das destâncias entre todos:" ] }, { "cell_type": "code", "execution_count": 9, "id": "c9e0626e-1534-4281-a41a-dcefca1f9f42", "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV8AAAEtCAYAAACvX2NLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgpElEQVR4nO3deXyU5d3v8c9vhkgIkSVsyqYFXjwqVJYEUdTWBTcefYlW3Hq0uOHznNpT2tNasFaoj1ZOOdaqtdXY2ipS6YMLdhGhiooVF0bQIyibQEQCKBoEQgJJ5nf+mAGSQJLJMrlC+L5fr3lxz31fc92/iyHfueaaIbe5OyIi0rwioQsQETkcKXxFRAJQ+IqIBKDwFREJQOErIhKAwldEJIAWFb5mdoaZfdqAx001syfTUVN9mdlOM+sXuo76MrM/mdldTdRXi3k+RFqqWsPXzCab2dxq+1bXsO/KdBTYXMzsWDNzM2vTmH7cPdvd1zZVXelgZuPN7F+h6xA5nNU1810IjDKzKICZHQ1kAMOq7RuQbJuyxoZcS9PaxiMi6VVX+C4mEbZDk/dPB14BVlbb97G7F5rZdWb2kZntMLO1Znbz3o72LimY2U/MbDPwRzNrl3y7W2RmHwIjaivGzAaZ2T/N7Esz22Jmtx2kzQFLF2a23sxGJ7dPMrOYmW1P9vGrZLO9Lx7bkksHpyTbX58cU5GZzTOzYyr162b2XTNbDayutG9AcvtPZvaQmf0j+Xfytpn1r/T4c81spZl9ZWa/NbPXzOzGGsY+1cxmm9mTyb4+MLOByXcnn5nZBjM7t1L7jmb2BzPbZGYbzewuM4ua2fHAw8ApyXFuq3SazrXUOsrMFidrXWxmoyod+1qy9h1m9k+ga83PoohAHeHr7nuAt4FvJHd9A3gd+Fe1fXuD6zPgQqADcB1wn5kNr9TlUUAOcAwwAZgC9E/ezgO+U1MtZnYk8BLwItCTxGz75RTGWN39wP3u3iF53v+uNA6ATsmlgzfN7GLgNuBSoFty7E9V628sMBI4oYbzXQn8HOgMrAHuTo6nK/A0MBnoQuIFbVQNfex1ETAj2ddSYB6J57AXcCfwSKW2fwLKSfw9DQPOBW5094+A/wDeTI6zUwq15gD/AB5I1vor4B9m1iX5uD8D75II3f+iludRRBJS+cDtNfYH0+kkAuj1avteA3D3f7j7x57wGjA/eXyvODDF3Xe7ewlwOXC3u3/p7htI/HDX5EJgs7vf6+6l7r7D3d9OcZyVlQEDzKyru+9097dqafsfwD3u/pG7lwO/AIZWnv0mj3+ZHM/BPOfu7yQfP5P97xjGAMvd/dnksQeAzXXU/rq7z0u2n03iBWGau5cBs4BjzayTmfVI9j/R3Yvd/TPgPhLhWpuaav13YLW7z3D3cnd/ClgBXGRmfUm8Y/lZ8nldCPytjvOIHPZSCd+FwGnJ2U83d18NLCKxFpwDDE62wcwuMLO3kssC20gEQOW3oJ+7e2ml+z2BDZXuF9RSRx/g4xTqrcsNwEBgRfLt84W1tD0GuN/MtiXH8yVgJGaae2042AMrqRyou4Ds5HaVsXviNxzV9U2PLZW2S4Ct7l5R6T7J/o8hsVy0qVLtjwDdG1Fr9eemgMTfQ0+gyN2Lqx0TkVqkEr5vAh2Bm4A3ANx9O1CY3Ffo7uvMrC3wDPB/gR7Jt7MvkAirvar/CrVNJEJ1r7611LEBSOUrXMVA1t47yQ8Gu+0rwH21u19FIoj+D/C0mbU/SG17z3mzu3eqdGvn7otqGVOqNgG9K9Vple830gZgN9C1Ut0d3H1Q8nh9ay4kEeiV9QU2khhH5+TfYeVjIlKLOsM3+XY6BvyQxHLDXv9K7tu73nsE0Bb4HCg3swtIrDPW5r+ByWbW2cx6A9+rpe3fgaPNbKKZtTWzI81s5EHarQIyzezfzSwDuD1ZFwBm9j/MrJu7x4Ftyd3xZN1xqgb8w8n6BiUf29HMxtUxplT9A/i6mY21xDclvktiTbzR3H0TiSWfe82sg5lFzKy/mX0z2WQL0NvMjkixyxeAgWZ2tZm1MbMrSKxx/93dC0j8+/i5mR1hZqeRWJsWkVqk+p8sXiMxU6z83dDXk/sWArj7DuB/kQjUIuBq4K919PtzEm9R15EIixk1NUz2fw6JH+zNJL5dcOZB2n0F/E/g9yRmZsVUfTt/PrDczHaS+PDtSncvcfddJD5geiP5Vv1kd3+OxOx4lpltB5YBF9QxppS4+1ZgHPBL4AsSYRYjMWNtCteSeEH8kMTz8TRwdPLYAmA5sNnMtqZQ6xck1tz/d7LWW4ELk2OAxHM9ksSyzBTgiSYag0irZfpl6i2DmUVIvEh8291fCV2PiKRXi/rvxYcbMzsv+e2EtiS+0mZAbd++EJFWQuEb1ikkvsGxlcRyythavrImIq2Ilh1ERALQzFdEJAD9Mpg6+Jp3G/zWwAbkWt2tRORwpJmviEgACl8RkQAUviIiASh8RUQCUPiKiASg8BURCUDhKyISgL7nG5iZrQd2ABVAubvnha3o0JOXlzcJyAxdh+xTGovFpoUuoqVT+NYhvuzNBj82OiA31aZnVvr1jFJ/mbFYbGroIiQhLy9vaugaDgVadhARCUDhm0ZmNsESl6nfe5twkGYOzDezd2s4LiKtkJYd0sjd84H8Opqd5u4bzaw78E8zW5G8ArCItGKa+Qbm7huTf34GPAecFLYiEWkOCt+AzKy9mR25d5vEBUeXha1KRJqDlh3C6gE8l7hqPG2AP7v7i2FLEpHmoPANyN3XAkNC1yEizU/LDiIiAWjmW5f/t6Thjx3bZFWISCujma+ISAAKXxGRABS+IiIBKHxFRAJQ+IqIBKDwFREJQOErIhKAvudbh9IlKxr82PZNWIdIU2imq34c2wy/UP2Qv1qGwlfk8NIqrvrRGq6WoWUHEZEAFL4iIgFo2UHSSmuMIgen8JV00xqjyEFo2UFEJACFr4hIAApfEZEAtOZbh4IPNjf4sSc0YR0i0rpo5isiEoDCV0QkAIWviEgACl8RkQAUviIiASh8RUQCUPiKiASg8BURCUD/yaIOy78sbvBj9Z8sRKQmmvmKiASg8BURCUDhKyISgMJXRCQAhW9AZna+ma00szVmNil0PSLSfBS+gZhZFHgIuIDEFyOuMjN9QULkMKHwDeckYI27r3X3PcAs4OLANYlIM9H3fOswrmiLNfSxZjYBmFBpV7675ye3ewEbKh37FBjZ0HOJyKFF4ZtGyaDNr7OhiBx2tOwQzkagT6X7vZP7ROQwYO4euobDkpm1AVYBZ5MI3cXA1e6+vBnL0JMvUrMGLzmmQssOgbh7uZndAswDosBjzRy8AMzu3KO5T9nkxhVtoXjsqNBlNFr7OYuomPOb0GU0WnTsLVTceX3oMhotesdjae1f4RuQu78AvBC6DhFpflrzFREJQOErIhKAwldEJACFr4hIAApfEZEAFL4iIgEofEVEAlD4iogEoPAVEQlA4SsiEoDCV0QkAIWviEgACl8RkQAUviIiASh8RUQCUPiKiASg8BURCUDhKyISgC4jJGnT4+wzGXbPXVg0ytoZM1n56wdDl1R/GUeQefdvISMDi0YpX/QKZbP+ELqqlFTE44x78C/06JDN76676IDjc99fzUMvvY1hHNezK9OvOi9AlbWItiEyfhJEMyASwT+K4a89X6WJ5Z6B5Z0FHoc9u4n//XHYWhio4PpR+Ep6RCIMnz6NhZdczq7CQkYvmEfh3HnsWLkqdGX1U7aH0ju+B6UlEI2Sec/DVCx5i/iqZr/Wab3N+Nf79O+ew87SPQccW791G4++GmPmf15Gx6xMvti5K0CFdagoJ/7EdCjbDZEokesm42s+gI1r9zXxD97C3301cWfgUCLnXkH8z/eFqbeetOwgaZGTO5yda9dRXFCAl5Wx4dk59BpzfuiyGqa0JPFntE3i5h62nhRs3raT11as51sjTjjo8affWc7Vp5xIx6xMALpkZzVneakr2534MxJN3KrbU7pv0zLaNlNRB2dmp5nZQ6m218xX0qLd0Uexa+P+t3+7Cgvpkjs8YEWNEImQee9jRI7qTdncZ4mv/jB0RXWa9reF/GjMqRTvPnDWC7D+8yIAvv3bp6mIx/nuOSM5/d+Oac4SU2NG5KYpkNMdX7ygyqx3X5O8s7CTz4VoG+IzftnM5dkw4GpgHLAOeDbVxyp8W6i8vLxJQGY6zxGLxdLZfesRj1P6g/HQPpvMSfdQ3rcf/smBIdBSvPrROnKysxjUuzvvfPzpQdtUxJ2Crdv4082XsOWrnVz78LPM+cHVdGgXdvZ4AHfi+VOhbTsiV9yCd+sFn2+s2iS2AI8twAaPxE6/CH++adbkzWwCMKHSrnx3zzezgcBVydtW4C+AufuZ9elf4dtyZcZisalpPseUdHVcsmkzWb167ruf1bMnJZs2p+t0zaN4JxUfLCE6bCTlLTh8l6zfxCsfrmXhyvXsLqugePcebp01n19eee6+Nj06ZnNinx5kRKP0zunIMV07UbB1G1/v0yNg5bXYXYKvX4ENGIxXC9+9fNk7RMZcQ1MtCrl7PpB/kEMrgNeBC919DYCZ/aC+/WvNV9KiaMlSsvv3I6tvXywjgz6XjqVw7rzQZdVfh07QPjuxfcQRRIeOwDcWBC2pLj+8YBSv/PR6Xpo0nnuvPo+R/XtXCV6Aswf1Y/HaRIgVFZdQsHUbfXI6hCi3ZllHQtt2ie02GVi/QfjWai/gOd33bw88Eb78rDkquxTYBLxiZo+a2dmA1bcTzXwlLbyigqW3TuYbz8zColHWzXyK7StWhi6r3qxzF9p+/2dYJAIWofyNl6mILQpdVoM8OP8tBvXuzlkn9OO0gX1ZtOoTLrz3SaKRCD8acyqd2rcLXWJV2R2JXHwDRCJghn+4GFa/j50xFi9cD6vew0acjX3tBIhXQGkx8ed/n/ay3H0OMMfM2gMXAxOB7mb2O+A5d5+fSj/mh8Ant4ejvLy8qc2w7OCzO7fQt5n1MK5oC8VjR4Uuo9Haz1lExZzfhC6j0aJjb6HizutDl9Fo0TseS3k2a2adSXzodoW7n53KY7TsICLSSO5e5O75qQYvKHxFRIJQ+IqIBKDwFREJQOErIhKAwldEJACFr4hIAApfEZEAFL4iIgEofEVEAlD4iogEoPAVEQlA4SsiEoDCV0QkAIWviEgACl8RkQAUviIiASh8RUQCUPiKiASg8BURCUAX0GykvLy8SUBmGro+NhaLjU9Dv5XpyRepWb0vB18funR842Wm4yrDeXl5Td7nwbSWq/62lqsw+5p3Q5fRaDYgt7VcvTit/WvZQUQkAIWviEgACl8RkQAUviIiASh8RUQCUPiKiASg8BURCUDhKyISgMJXRCQAha+ISAAKXxGRABS+IiIBKHxFRAJQ+IqIBKDwFREJQOErIhKAwldEJACFr4hIAApfEZEAdA03SY+MI8i8+7eQkYFFo5QveoWyWX8IXVWD9Dj7TIbdcxcWjbJ2xkxW/vrB0CXVafvOYm5/4FFWF2zAMO6eOIFhxw/cd/zlN2Pc/+RsIhYhGo1w24RryB10XMCKDyLahsj4SRDNgEgE/yiGv/Z8lSY25FRs9OWwowgAX/wyvvT1ENXWm8JX0qNsD6V3fA9KSyAaJfOeh6lY8hbxVctDV1Y/kQjDp09j4SWXs6uwkNEL5lE4dx47Vq4KXVmt7s5/gtNzh/DAbRPZU1ZO6e7dVY6fPHQwZ52ci5mxct0nTJx2P3MfuTdQtTWoKCf+xHQo2w2RKJHrJuNrPoCNa6s08+Xv4C/ODFRkw2nZQdKntCTxZ7RN4uaH3pXqc3KHs3PtOooLCvCyMjY8O4deY84PXVatdhTvIrZsBZedewYAR2S0oUN2+ypt2rfLxCxxZfRdpaVYeq+S3nBlyReNSDRxawHMbICZnXqQ/aeaWf9U+9HMV9InEiHz3seIHNWbsrnPEl/9YeiK6q3d0Uexa2Phvvu7Cgvpkjs8YEV1+3TzZ+R0PJLJ9z3CynUFDBrwNW67+VqyMjOrtPvnosX86vFZfLltOw9P/XGgautgRuSmKZDTHV+84IBZL4Adn4sdMxC+2EJ8/lOwvSjdVf0amHyQ/duTxy5KpROFb8tVmpeXNzWdJ4jFYunsHuJxSn8wHtpnkznpHsr79sM/OfCHR5pWeTzOh2vWc/vN4xly3ADufuRxHp39V75/zeVV2p0zagTnjBrB4mUf8cCM2fzxFz8NVHEt3InnT4W27YhccQverRd8vnH/4VXv4cvehopybPg3iVx8I/EZ05vk1GY2AZhQaVe+u+cDPdz9gwNL9Q/M7NhU+1f4tlCxWGxaM5xmSjOcA4p3UvHBEqLDRlJ+iIVvyabNZPXque9+Vs+elGzaHLCiuh3VJYceXXMYctwAAM47dSSPzv5rje1HDD6eDZs/o+ir7XTu2KG5yqyf3SX4+hXYgMF4pfClpHjfpi9diI0e12SnTAZt/kEOdarlYe1S7V9rvpIeHTpB++zE9hFHEB06At9YELSkhihaspTs/v3I6tsXy8igz6VjKZw7L3RZteqW04mju3Vh7aeJ5ZI3319G/769qrQpKNyMJ9fgl69Zx57ycjp1OLLZa61V1pHQNpllbTKwfoPwrdVe+LI77t8eOAy2bmqOymJmdlP1nWZ2I/Buqp1o5itpYZ270Pb7P8MiEbAI5W+8TEVsUeiy6s0rKlh662S+8cwsLBpl3cyn2L5iZeiy6nT7zd/hx9Mfoqy8nD5HdecXE29m1gsvAXDlmNHMf+Mdnl/wOm2ibWjbNoP7fvK9fR/AtRjZHYlcfANEImCGf7gYVr+PnTEWL1wPq97DThqNDRwK8TiU7iT+fLN8nXEi8JyZfZv9YZsHHAFckmon5ofgJ9AtSV5e3tRYLDY1dB0N5MVjR4WuodHaz1nE7M49QpfRaOOKtuBrUp44tVg2IJeKO68PXUajRe94rNZXIzM7ExicvLvc3RfUp3/NfEVEGsDdXwFeaejjteYrIhKAwldEJACFr4hIAApfEZEAFL4iIgEofEVEAlD4iogEoPAVEQlA4SsiEoDCV0QkAIWviEgACl8RkQAUviIiASh8RUQCUPiKiASg8BURCUDhKyISgMJXRCQAha+ISAC6gGYjHeoX0AxdgEgLltbLOesCmoe5ijm/CV1Co0XH3tJqrvrbWq7C3EquXpzW/rXsICISgMJXRCQAha+ISAAKXxGRABS+IiIBKHxFRAJQ+IqIBKDwFREJQOErIhKAwldEJACFr4hIAApfEZEAFL4iIgEofEVEAlD4iogEoPAVEQlA4SsiEoDCV0QkAIWviEgAuoabNJmKeJxxD/6FHh2y+d11Fx1wfO77q3nopbcxjON6dmX6VecFqLJ223cWc/sDj7K6YAOGcffECQw7fuC+4y+/GeP+J2cTsQjRaITbJlxD7qDjAlacuh5nn8mwe+7ColHWzpjJyl8/GLqk2kXbEBk/CaIZEIngH8Xw156v0sSGnIqNvhx2FAHgi1/Gl74eotp6U/hKk5nxr/fp3z2HnaV7Dji2fus2Hn01xsz/vIyOWZl8sXNXgArrdnf+E5yeO4QHbpvInrJySnfvrnL85KGDOevkXMyMles+YeK0+5n7yL2Bqq2HSITh06ex8JLL2VVYyOgF8yicO48dK1eFrqxmFeXEn5gOZbshEiVy3WR8zQewcW2VZr78HfzFmYGKbDgtO0iT2LxtJ6+tWM+3Rpxw0ONPv7Ocq085kY5ZmQB0yc5qzvJSsqN4F7FlK7js3DMAOCKjDR2y21dp075dJmaJK4rvKi3F0nt18SaTkzucnWvXUVxQgJeVseHZOfQac37osupWlnzxi0QTt1ZEM19pEtP+tpAfjTmV4t0HznoB1n+eeFv47d8+TUU8znfPGcnp/3ZMc5ZYp083f0ZOxyOZfN8jrFxXwKABX+O2m68lKzOzSrt/LlrMrx6fxZfbtvPw1B8HqrZ+2h19FLs2Fu67v6uwkC65wwNWlCIzIjdNgZzu+OIFB8x6Aez4XOyYgfDFFuLzn4LtRc1QlvV1908a04fCt4XIy8ubBGTW2bAJxWKxJunn1Y/WkZOdxaDe3Xnn408P2qYi7hRs3cafbr6ELV/t5NqHn2XOD66mQ7u2TVJDUyiPx/lwzXpuv3k8Q44bwN2PPM6js//K96+5vEq7c0aN4JxRI1i87CMemDGbP/7ip4EqPgy4E8+fCm3bEbniFrxbL/h84/7Dq97Dl70NFeXY8G8SufhG4jOmN8mpzWwCMKHSrnx3z09uzwGGJ9s94+7fqm//Ct+WIzMWi01t5nNOaYpOlqzfxCsfrmXhyvXsLqugePcebp01n19eee6+Nj06ZnNinx5kRKP0zunIMV07UbB1G1/v06MpSmgSR3XJoUfXHIYcNwCA804dyaOz/1pj+xGDj2fD5s8o+mo7nTt2aK4yG6Rk02ayevXcdz+rZ09KNm0OWFE97S7B16/ABgzGK4UvJcX7Nn3pQmz0uCY7ZTJo82s4XHm9qV9D+tearzTaDy8YxSs/vZ6XJo3n3qvPY2T/3lWCF+DsQf1YvDbxQ1NUXELB1m30yWlZgdUtpxNHd+vC2k8Tb8/ffH8Z/fv2qtKmoHAz7g7A8jXr2FNeTqcORzZ7rfVVtGQp2f37kdW3L5aRQZ9Lx1I4d17osmqXdSS0bZfYbpOB9RuEb632gpHdcf/2wGGwdVNzVec1bKdMM19Jmwfnv8Wg3t0564R+nDawL4tWfcKF9z5JNBLhR2NOpVP7dqFLPMDtN3+HH09/iLLycvoc1Z1fTLyZWS+8BMCVY0Yz/413eH7B67SJtqFt2wzu+8n39n0A15J5RQVLb53MN56ZhUWjrJv5FNtXrAxdVu2yOxK5+AaIRMAM/3AxrH4fO2MsXrgeVr2HnTQaGzgU4nEo3Un8+T80V3VDzGw7iRlwu+Q2yfvu7nXOLGzvq7g0TF5e3tSmWC5oqn7qySvm/KaZT9n0omNvwde8G7qMRrMBuczu3HKWYRpqXNEWKu68PnQZjRa947G0vqpq2UFEJACFr4hIAApfEZEAFL4iIgEofEVEAlD4iogEoPAVEQlA4SsiEoDCV0QkAIWviEgACl8RkQAUviIiASh8RUQCUPiKiASg8BURCUDhKyISgMJXRCQAha+ISAAKXxGRABS+IiIB6AKajZSXlzcJyGyCro6NxWLjm6Cf+tCTL1KztF5AU5eOb6RYLDatKfrJy8ub2hT91FcrucqsxtGCRO94rNVchTmdtOwgIhKAwldEJACFr4hIAApfEZEAFL4iIgEofEVEAlD4iogEoPAVEQlA4SsiEoDCV0QkAIWviEgACl8RkQAUviIiASh8RUQCUPiKiASg8BURCUDhKyISgMJXRCQAha+ISAC6hps0XrQNkfGTIJoBkQj+UQx/7fkqTSz3DCzvLPA47NlN/O+Pw9bCQAXXIJVxDDkVG3057CgCwBe/jC99PUS1NWst4ziIHmefybB77sKiUdbOmMnKXz8YuqQGU/hK41WUE39iOpTthkiUyHWT8TUfwMa1+5r4B2/h776auDNwKJFzryD+5/vC1FuTFMYB4MvfwV+cGajIFLSWcVQXiTB8+jQWXnI5uwoLGb1gHoVz57Fj5arQlTWIlh2kaZTtTvwZiSZu1e0p3bdpGW2bqagGqGsch4rWMo5KcnKHs3PtOooLCvCyMjY8O4deY84PXVaDaeYrTcOMyE1TIKc7vnjBAbMsAMs7Czv5XIi2IT7jlwGKTEEq4zg+FztmIHyxhfj8p2B7UYBC69BaxlFJu6OPYtfG/UtVuwoL6ZI7PGBFVZlZV+ALd/dU2it8W47SvLy8qc15wlgs1nSduRPPnwpt2xG54ha8Wy/4fGPVJrEFeGwBNngkdvpF+PN/aLrzN5U6xuGr3sOXvQ0V5djwbxK5+EbiM6aHq7cmrWUcAZnZBGBCpV357p6fPHYyMA34EvgvYAbQFYiY2bXu/mJd/St8W4hYLDYtwGmnNHmPu0vw9SuwAYPxauG7ly97h8iYa0hpehBKTeMoKd636UsXYqPHBSiuHlrLOICSTZvJ6tVz3/2snj0p2bQ5bedLBm1+DYd/A9wGdAQWABe4+1tmdhzwFFBn+GrNVxov60ho2y6x3SYD6zcI31rthyKn+/7tgSfCl581X32pSmUc2R33bw8cBls3NV99qWot46imaMlSsvv3I6tvXywjgz6XjqVw7rxQ5bRx9/nuPhvY7O5vAbj7ipQ7SFtpcvjI7kjk4hsgEgEz/MPFsPp97IyxeOF6WPUeNuJs7GsnQLwCSouJP//70FUfKJVxnDQaGzgU4nEo3Um8JS6dtJZxVOMVFSy9dTLfeGYWFo2ybuZTbF+xMlQ58UrbJdWOpfSmzlJcG5bWySvuvD50DY0WveMxNI6WI3rHY8zu3CN0GY02rmiL1XTMzCqAYsCAdsCuvYeATHfPqKt/zXxFROrJ3Rv9/T2t+YqIBKDwFREJQOErIhKAwldEJACFr4hIAApfEZEAFL4iIgEofEVEAlD4iogEoPAVEQlA4SsiEoDCV0QkAIWviEgACl8RkQAUviIiASh8RUQCUPiKiASg8BURCUDhKyISgC6gKWllZhPcPT90HY2lcbQsrWEcmvlKuk0IXUAT0ThalkN+HApfEZEAFL4iIgEofCXdDul1uUo0jpblkB+HPnATEQlAM18RkQAUviIiASh8JW3MbKyZuZkdF7qWhjKzo8xslpl9bGbvmtkLZjYwdF31ZWYVZvZepduxoWuqr0pjeN/MlpjZqNA1NYbWfCVtzOwvQE9ggbtPCV1PfZmZAYuAx9394eS+IUAHd389aHH1ZGY73T07dB2NUXkMZnYecJu7fzNwWQ2mma+khZllA6cBNwBXBi6noc4EyvYGL4C7v3+oBW8r1QEoCl1EY7QJXYC0WhcDL7r7KjP7wsxy3f3d0EXV02DgUKu5Ju3M7L3k9jp3vyRkMQ20dwyZwNHAWWHLaRyFr6TLVcD9ye1ZyfutJcgORSXuPjR0EY20bwxmdgrwhJkN9kN07VThK03OzHJIzEq+bmYORAE3sx8fYj8oy4HLQhchB3L3N82sK9AN+Cx0PQ2hNV9Jh8uAGe5+jLsf6+59gHXA6YHrqq8FQFsz2/dLXMzsRDM71MbR6iS/QRMFvghdS0MpfCUdrgKeq7bvmeT+Q0Zyln4JMDr5VbPlwD3A5rCVHbba7f2qHPAX4DvuXhG4pgbTV81ERALQzFdEJACFr4hIAApfEZEAFL4iIgEofEVEAlD4iogEoPAVEQng/wMzN13SsLj8dgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "v5_distmat_link = hc.linkage(pdist(v5_df), method=\"ward\")\n", "\n", "sns.clustermap(\n", " v5_distmat,\n", " annot = True,\n", " cmap=sns.color_palette(\"Reds_r\"),\n", " linewidth=1,\n", " row_linkage=v5_distmat_link,\n", " col_linkage=v5_distmat_link,\n", " figsize=(4,4)\n", ")\n", "plt.title('Ward clustering method')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "4a0bf55e-aa94-4aaa-9527-3fa3abbb0e62", "metadata": {}, "source": [ "Servem estes exemplos para mostrar que a forma como se procede ao agrupamento é resultado de várias decisões, e se em geral o resultado é o mesmo para valores mais distantes, podem ter resultados diferentes para diferenºas mais pequenas." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 5 }